In vitro effects of verteporfin on ocular cells
نویسندگان
چکیده
PURPOSE Photodynamic therapy (PDT) laser light in conjunction with the benzoporphyrin derivative verteporfin is a current clinical treatment for choroidal vascular diseases such as age-related macular degeneration. The aim of this study was to examine the effects of PDT laser-activated and inactive verteporfin on various cultured ocular cells. METHODS Primary human scleral fibroblasts (hFibro), primary human trabecular meshwork (TM) cells (hTMC), primary porcine TM cells (pTMC), and a human retinal pigment epithelial cell line (ARPE-19 cells) were treated with verteporfin with and without activation by PDT laser. Cell viability was determined according to mitochondrial enzyme activity (3-(4,5- dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide assay). RESULTS PDT laser treatment alone was insufficient to cause significant cell death in any of the cell types tested. Twenty-four-hour exposure to inactive verteporfin (without PDT laser) caused a dose-dependent decrease in cell viability in hFibro and hTMC, and to a lesser extent ARPE-19 cells. Verteporfin (0.5 µg/ml) without PDT laser activation caused a slight but statistically insignificant reduction in cell viability in hFibro (81.5% ± 19.3%), pTMC (82.9% ± 6.7%), hTMC (80.3% ± 7.7%), and ARPE-19 cells (84.5% ± 14.9%). Verteporfin (0.5 µg/ml) plus 50 µJ/cm(2) PDT laser treatment significantly decreased viability in hFibro (13.5% ± 3.3%), pTMC (7.1% ± 1.5%), hTMC (11.1% ± 5.2%), and ARPE-19 (44.5% ± 7.8%). Similar results were obtained in cells where verteporfin incubation was followed by washout before PDT laser, indicating that verteporfin is internalized by the studied cell lines. CONCLUSIONS PDT laser-induced cell death was obtained with coincubation of verteporfin or preincubation followed by washout. These results suggest a potential future use of PDT therapy for selective in vivo removal of targeted ocular cells beyond the current use for destroying vascular endothelial cells.
منابع مشابه
Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation.
Uveal melanoma (UM) is the most common primary ocular malignancy in adults. Currently, no beneficial systemic therapy is available; therefore, there is an urgent need for effective targeted therapeutic drugs. As verteporfin has shown anti-neoplastic activity in several types of cancers, here we hypothesized and investigated the efficacy of verteporfin against UM cells without light activation. ...
متن کاملIn-vitro Apoptotic Effects of Deferoxamine on the Glioblastoma Cell Line
Background: Research suggests the inhibitory effects of deferoxamine as an iron chelator on erythroleukemia cells. The present study was conducted to investigate the effects of deferoxamine on B92 cells as a model of glial cells carcinoma. Materials and Methods: The present experimental study treated 6×104 B92 cells with 0, 10, 50 and 100 µM of deferoxamine for 24 hours in the presence or absen...
متن کاملRho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension
In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells dec...
متن کاملClinical Policy Bulletin: Age-Related Macular Degeneration
Aflibercept (Eylea) injection (CPB 0701 Vascular Endothelial Growth Factor Inhibitors for Ocular Indications) Bevacizumab (Avastin) injection (CPB 0685 Bevacizumab (Avastin)) Pegaptanib sodium (Macugen) injection (CPB 0701 Vascular Endothelial Growth Factor Inhibitors for Ocular Indications) Photodynamic therapy (PDT) with light-activated verteporfin (CPB 0594 Visudyne (Verteporfin) Photodynami...
متن کاملApoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target.
We report that the photosensitizer verteporfin kills lymphoma cells by an apoptotic process involving a dissipation of the mitochondrial inner transmembrane potential (deltapsim). Light-activated verteporfin-induced apoptosis was abolished by transfection with Bcl-2, a procedure reported to inhibit the mitochondrial permeability transition pore complex (PTPC). Verteporfin triggered the deltapsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2013